Making *Salmonella* Count
Public Health Perspectives and Laboratory Testing Implementation

Alex Brandt, Ph.D. (Presenter)
Chief Science Officer
Food Safety Net Services (FSNS)

Kendra Nightingale, Ph.D.
Professor of Food Safety and Public Health
Texas Tech University

October 15, 2019
SALMONELLA

Gram negative, rod shaped, motile, facultative intracellular pathogen

Taxonomy

- Two species *Salmonella enterica* (i.e., six subspecies) & *Salmonella bongori*
- > 2,500 serotypes
- Refer to as genus & serotype (e.g., *Salmonella* Typhi)

Widespread occurrence in gastrointestinal tract

- Humans, other animals, birds, reptiles some insects
- Particularly swine and poultry

Ubiquitous in environment (soil & water)
Salmonella serotypes show host specificity

- *Salmonella* Pullorum (poultry)
- *Salmonella* Dublin (cattle)
- *Salmonella* Arizonae (reptiles)

Host specificity mediated by species-specific fimbriae (*lpf*) which are important for tissue tropism to M cells
NON-TYHPOIDAL SALMONELLOSIS

Consumption of raw or undercooked foods (often of animal origin) contaminated by animal feces or raw eggs (*Salmonella* Enteritidis)
Unwashed hands of food handler
Diarrhea, fever, abdominal cramps onset 12-72 h following consumption of contaminated food
Illness lasts 4 to 7 d & usually resolves without antibiotic treatment

• *Salmonella* infection may disseminate from intestine to bloodstream & other tissues
• Reiter’s syndrome (joint pain, eye irritation, & painful urination)
INCIDENCE OF FOODBORNE ILLNESS

• Centers for Disease Control & Prevention, Division of Foodborne, Waterborne and Environmental Diseases
 • Monitoring of laboratory confirmed cases (FoodNet data)
 • Estimates derived from statistical modeling with inputs and uncertainty measurements
 • Underreporting and under-diagnosing
FOODNET HAS SITES IN 10 STATES
ESTIMATED INCIDENCE OF FOODBORNE ILLNESS IN THE U.S. EACH YEAR

Summary of domestically acquired foodborne illness attributed to 31 major pathogens

• 9.4 million illnesses
• 55,961 hospitalizations
• 1,351 deaths
• *Toxoplasma gondii*, *Salmonella*, and *Listeria monocytogenes* responsible for >70% of deaths due to major foodborne pathogens

Summary of domestically acquired foodborne illness attributed to unspecified agents

• 38.4 million illnesses
• 71,878 hospitalizations
• 1,686 deaths

(Scallan et al., 2011a and b)
RELATIVE RATE OF CULTURE CONFIRMED INFECTIONS

The graph shows the relative rate of culture confirmed infections over a period from 1996 to 2012. The infections tracked include Vibrio, Campylobacter, Salmonella, Listeria, and STEC O157. The relative rate is plotted on a log scale, and the years are indicated on the x-axis.

- Vibrio: The line for Vibrio shows a steady increase from 1996, peaking around 2012.
- Campylobacter: This infection rate also shows a steady increase, similar to Vibrio, with a peak around 2012.
- Salmonella: The Salmonella infection rate is relatively stable, with minor fluctuations over the years.
- Listeria: The Listeria infection rate shows a slight increase overall, with some fluctuations, peaking in 2012.
- STEC O157: The line for STEC O157 is the most volatile, showing significant changes over the years with a peak around 2012.

The graph highlights the increasing trend in the relative rate of these infections over time.
RELATIVE RATE OF CULTURE CONFIRMED INFECTIONS: NEW BASELINE DATA
HACCP Percent of Total Positive Serotypes
Ground Beef, CY-2014

- Montevideo: 22.4%
- Dublin: 12.1%
- Cerro: 9.5%
- Muenchen: 6.9%
- Newport: 8.6%
- Muenster: 4.3%
- Anatum: 5.2%
- Other: 31.0%
Table 1a. Culture-confirmed human *Salmonella* infections reported to LEDS, with the 20 most frequently reported serotypes listed individually, United States, 2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Serotype</th>
<th>Number reported</th>
<th>Percent</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enteritidis</td>
<td>8,895</td>
<td>20.0</td>
<td>2.79</td>
</tr>
<tr>
<td>2</td>
<td>Typhimurium</td>
<td>5,041</td>
<td>11.3</td>
<td>1.58</td>
</tr>
<tr>
<td>3</td>
<td>Newport</td>
<td>4,437</td>
<td>10.0</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>Javiana</td>
<td>2,704</td>
<td>6.1</td>
<td>0.85</td>
</tr>
<tr>
<td>5</td>
<td>1,4,[5],12:i:-</td>
<td>2,189</td>
<td>4.9</td>
<td>0.69</td>
</tr>
<tr>
<td>6</td>
<td>Heidelberg</td>
<td>1,430</td>
<td>3.2</td>
<td>0.45</td>
</tr>
<tr>
<td>7</td>
<td>Infantis</td>
<td>1,357</td>
<td>3.1</td>
<td>0.43</td>
</tr>
<tr>
<td>8</td>
<td>Saintpaul</td>
<td>980</td>
<td>2.2</td>
<td>0.31</td>
</tr>
<tr>
<td>9</td>
<td>Muenchen</td>
<td>873</td>
<td>2.0</td>
<td>0.27</td>
</tr>
<tr>
<td>10</td>
<td>Montevideo</td>
<td>841</td>
<td>1.9</td>
<td>0.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Serotype</th>
<th>Number reported</th>
<th>Percent</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Oranienburg</td>
<td>728</td>
<td>1.6</td>
<td>0.23</td>
</tr>
<tr>
<td>12</td>
<td>Thompson</td>
<td>626</td>
<td>1.4</td>
<td>0.20</td>
</tr>
<tr>
<td>13</td>
<td>Braenderup</td>
<td>610</td>
<td>1.4</td>
<td>0.19</td>
</tr>
<tr>
<td>14</td>
<td>Mississippi</td>
<td>532</td>
<td>1.2</td>
<td>0.17</td>
</tr>
<tr>
<td>15</td>
<td>Typhi</td>
<td>527</td>
<td>1.2</td>
<td>0.17</td>
</tr>
<tr>
<td>16</td>
<td>Bareilly</td>
<td>381</td>
<td>0.9</td>
<td>0.12</td>
</tr>
<tr>
<td>17</td>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>335</td>
<td>0.8</td>
<td>0.11</td>
</tr>
<tr>
<td>18</td>
<td>Poona</td>
<td>322</td>
<td>0.7</td>
<td>0.10</td>
</tr>
<tr>
<td>19</td>
<td>Berta</td>
<td>318</td>
<td>0.7</td>
<td>0.10</td>
</tr>
<tr>
<td>20</td>
<td>Agona</td>
<td>307</td>
<td>0.7</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Background

- *Salmonella* is not an adulterant for raw meat and poultry.*
- However, must meet established performance standards.
- Whether or not an individual develops salmonellosis is based on several factors such as the immune status of the individual, the amount of product consumed, and the *concentration* of *Salmonella* in the product.
Background

Salmonella prevalence is fairly high in FSIS sampling:

<table>
<thead>
<tr>
<th>Species</th>
<th>Product</th>
<th>Pathogen</th>
<th>Current Period July 1, 2018 - June 30, 2019</th>
<th>Historical Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Beef</td>
<td>RGB Components</td>
<td>Salmonella spp.</td>
<td>Number of Samples 1,213</td>
<td>Number of Positives 85</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Trim</td>
<td>Salmonella spp.</td>
<td>3,968</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Bench Trim</td>
<td>Salmonella spp.</td>
<td>1,372</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Raw Ground</td>
<td>Salmonella spp.</td>
<td>10,663</td>
<td>201</td>
</tr>
<tr>
<td>Raw Pork</td>
<td>Intact Cuts</td>
<td>Salmonella spp.</td>
<td>1,330</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Non-intact Cuts</td>
<td>Salmonella spp.</td>
<td>1,165</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Comminuted</td>
<td>Salmonella spp.</td>
<td>1,652</td>
<td>351</td>
</tr>
<tr>
<td>Raw Chicken</td>
<td>Whole Carcasses</td>
<td>Salmonella spp.</td>
<td>8,990</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>Quarter or Half Carcasses</td>
<td>Salmonella spp.</td>
<td>91</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Parts - Legs, Breasts, Wings</td>
<td>Salmonella spp.</td>
<td>8,431</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>Other Parts</td>
<td>Salmonella spp.</td>
<td>305</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Comminuted</td>
<td>Salmonella spp.</td>
<td>1,965</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>Mechanically Separated</td>
<td>Salmonella spp.</td>
<td>112</td>
<td>89</td>
</tr>
<tr>
<td>Raw Turkey</td>
<td>Whole Carcasses</td>
<td>Salmonella spp.</td>
<td>1,872</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Comminuted</td>
<td>Salmonella spp.</td>
<td>1,539</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Mechanically Separated</td>
<td>Salmonella spp.</td>
<td>105</td>
<td>53</td>
</tr>
</tbody>
</table>
Background

• Just because *Salmonella* prevalence is high, it does not necessarily mean that the concentrations are high.

• *Salmonella* quantification techniques aim to identify product lots with elevated concentrations of *Salmonella* that will pose an elevated public health risk.

|-----------|-----|-----------|------|---|-----------|-----|-----------|-----|
Deliverables

• Understand what decisions have to be made prior to implementing a quantification-based *Salmonella* management program.

• Understand the methodology that laboratories use to perform routine testing and the process of validating this testing.
Implementation Decisions

- What level should you target? What is your risk?

\[\text{Attack Rate} = \frac{\text{Number of Exposed People Who Are Sick}}{\text{Total Number of People Exposed}} \]

Log = Factor of 10
1.0 Log = 10
2.0 Log = 100
3.0 Log = 1000
4.0 Log = 10000
Implementation Decisions

• Sample types?

• Frequency of sampling?
Implementation Decisions

- What sample size do you test?
Implementation Decisions

• How do you dispose of positive product?

• Budget for product disposition?
Laboratory Methodology

• Old Approaches: Cultural Methods
 – Most Probable Number (MPN)
 – Test +/- on sets of tubes with different quantities of the original sample

• Direct Plating
 – Plate directly to selective media
 – Issues with background organisms
New Approaches: Limits Testing

Bend rules on traditional +/- assays by using them in a semi-quantitative manner.

Traditional +/- assays are designed to determine if there is any *Salmonella* present (i.e. 1 CFU/375 g sample).

With limits testing you shorten incubation time to catch only those samples that have high enough concentrations of *Salmonella* starting out (i.e. as high as 10 CFU/g)
Laboratory Methodology

If you test at 8 hours you will get positives for all three starting concentrations.

Limit of Detection for +/- Assay
Laboratory Methodology

If you test at 3 hours you will only get positives for those samples with concentrations over 100 CFU/g

Limit of Detection for +/- Assay
Validation Process

• Grow *Salmonella* in liquid culture.

• Enumerate and store in refrigerator overnight.
Validation Process

• Use plate counts to adjust culture concentration.

• Inoculate meat samples.
Validation Process

• Enrich meat samples.

• Incubate meat samples and pull every hour for testing from 2-6 hours
Validation Process

• Test on testing platform.

• Evaluate results and determine time point for threshold testing.
Validation Process

• Verify starting concentration with plate counts plated after inoculation of the samples.
Current Implementation

There are two beef producers that we are aware of, each with a different form of testing that are currently doing *Salmonella* threshold testing.

Approach 1:
Client is currently using their *E. coli* O157:H7 enrichments to test for *Salmonella* level at 10 CFU/g at 4 hours of enrichment.

Approach 2:
Client is currently using their *E. coli* O157:H7 enrichments to test for *Salmonella* level of 1 CFU/g at 5 hours of enrichment.
Thank You!

QUESTIONS?