WASTEWATER BEST PRACTICES

IMPROVING WASTEWATER SYSTEMS

2018 NAMI ENVIRONMENTAL CONFERENCE
TYPICAL BEST PRACTICES

• O & M MANUAL
 • DESIGN CRITERIA – BACKGROUND - TREATMENT PROCESSES – TYPICAL LOADING RATES FOR EACH PROCESS
 • EQUIPMENT LIST – CRITICAL EQUIPMENT & SPARE PARTS LIST
 • SAMPLING/MONITORING PLAN & QC FOR TESTING – WHO, WHAT, WHERE, WHEN, & HOW
 • TYPICAL/IDEAL RANGES FOR EACH TEST
 • PERMIT REQUIREMENTS
 • OPERATIONAL STRATEGY – HOW TO ACHIEVE DESIRED RESULTS & ADJUSTMENTS
 • NOTIFICATIONS – NON-COMPLIANCE/SPILLS/LEAKS/BY-PASS/DEVIATIONS FROM SAMPLING PLAN
 • PREVENTATIVE MAINTENANCE
 • TROUBLESHOOTING
 • UPDATE- LIVING DOCUMENT – SYSTEM CHANGES/ADDITIONS, OPERATIONAL STRATEGIES
TYPICAL BEST PRACTICES

• OPERATOR TRAINING
 • MAINTENANCE, TESTING/MONITORING, PROCESS OPERATIONS, OBSERVATIONS, CALCULATIONS

• COMMUNICATION, COMMUNICATION, COMMUNICATION
 • DON’T SET YOUR PLANT ON AN ISLAND
 • BE PRO-ACTIVE, GET INVOLVED WITH PLANT OPERATIONS WHICH DIRECTLY EFFECT THE LIVELIHOOD OF THE WWTP – WATER USAGE, LOADINGS, SPILLS. SELF ADVOCATE.
 • IF YOU AREN’T PART OF THE SOLUTION……..GUESS WHAT???
 • DON’T BE PROUD WHEN ISSUES SURFACE - REACH OUT – OTHERS MOST LIKELY HAVE BEEN THROUGH IT.

• OPERATORS LOG
 • DEAR DIARY… TODAY MY FRIEND NOCARDIA DECIDED TO PAY US A VISIT… WHAT A GLORIOUS SURPRISE!
IMPROVING WASTEWATER SYSTEMS

• WHAT ARE OUR GOALS?
 • MEET PERMIT LIMITS
 • PRODUCE THE BEST EFFLUENT QUALITY AT THE LOWEST OPERATING COST
 • AVOID UPSET CONDITIONS/PERMIT VIOLATIONS/PRODUCTION LOSSES

• HOW DO WE ACHIEVE THESE?
 • KNOW YOUR SYSTEM & ITS CAPABILITIES
 • DON’T BE AFRAID OF CHANGE - #1 CAUSE OF RESISTANCE
 “WE’VE NEVER DONE THAT” “WE CAN’T DO THAT”
 “IF YOU ALWAYS DO WHAT YOU’VE ALWAYS DONE,
 YOU’LL ALWAYS GET WHAT YOU’VE ALWAYS GOTTEN”
 • MONITORING DATA
 • TYPICALLY NOT ENOUGH DATA, LACK OF RELEVANT & CURRENT DATA, OR NOT UNDERSTANDING THE STORY
 • YOU’LL NEVER HEAR SOMEONE TROUBLESHOOTING A SYSTEM SAY, “I WISH YOU DIDN’T HAVE SO MUCH MONITORING DATA”
<table>
<thead>
<tr>
<th></th>
<th>Blank</th>
<th>1/3</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/3</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/3</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyson Influent</td>
<td></td>
<td>18/31</td>
<td>100</td>
<td>27.4</td>
<td>37.0</td>
<td>136.0</td>
<td>137.0</td>
<td>139.0</td>
<td>137.0</td>
<td>128.0</td>
<td></td>
</tr>
<tr>
<td>Tyson Effluent 6.4</td>
<td>20/31</td>
<td>200</td>
<td>0.027</td>
<td>1.0</td>
<td>0.654</td>
<td>1.06</td>
<td>4.1</td>
<td>44.5</td>
<td>32.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nut. N</td>
<td>6.4</td>
<td></td>
<td>10.6</td>
<td>13.0</td>
<td>7.4</td>
<td>7.8</td>
<td>4.0</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Fail total</td>
<td>6.4</td>
<td></td>
<td>16.2</td>
<td>16.8</td>
<td>16.45</td>
<td>16.9</td>
<td>16.8</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail N</td>
<td>7.4</td>
<td></td>
<td>0.58</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail P</td>
<td>7.8</td>
<td></td>
<td>6.04</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>4/3</td>
<td>400</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>pH 4 ppm Twice</td>
<td>1/4</td>
<td>18.9</td>
<td>9.02</td>
<td>18.9</td>
<td>9.02</td>
<td>18.9</td>
<td>9.02</td>
<td>18.9</td>
<td>9.02</td>
<td>18.9</td>
<td></td>
</tr>
</tbody>
</table>

Data for troubleshooting

"Give me all you have on current data"

Houston we have a problem
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/2018</td>
<td>5680</td>
<td>430</td>
<td>76</td>
<td>7605</td>
<td>411</td>
<td>368</td>
<td>136.0</td>
<td>6.4</td>
<td>531</td>
<td>121</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2/2018</td>
<td>5590</td>
<td>470</td>
<td>84</td>
<td>7810</td>
<td>471</td>
<td>518</td>
<td>137.0</td>
<td>6.6</td>
<td>302</td>
<td>95</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2018</td>
<td>5555</td>
<td>430</td>
<td>77</td>
<td>8165</td>
<td>443</td>
<td>429</td>
<td>139.0</td>
<td>7.4</td>
<td>227</td>
<td>78</td>
<td>32.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/2018</td>
<td>5405</td>
<td>420</td>
<td>78</td>
<td>9050</td>
<td>466</td>
<td>423</td>
<td>128.0</td>
<td>7.5</td>
<td>442</td>
<td>95</td>
<td>44.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/5/2018</td>
<td>5350</td>
<td>410</td>
<td>77</td>
<td>9995</td>
<td></td>
</tr>
<tr>
<td>1/6/2018</td>
<td>5460</td>
<td>410</td>
<td>75</td>
<td>8710</td>
<td></td>
</tr>
<tr>
<td>1/7/2018</td>
<td>5705</td>
<td>390</td>
<td>68</td>
<td>9535</td>
<td>830</td>
<td>958</td>
<td>150.0</td>
<td>7.5</td>
<td>45</td>
<td>36</td>
<td>53.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8/2018</td>
<td>6330</td>
<td>420</td>
<td>66</td>
<td>10810</td>
<td>1316</td>
<td>1145</td>
<td>150.5</td>
<td>7.3</td>
<td>45</td>
<td>28</td>
<td>39.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9/2018</td>
<td>6500</td>
<td>400</td>
<td>62</td>
<td>12240</td>
<td>896</td>
<td>1360</td>
<td>142.0</td>
<td>7.2</td>
<td>40</td>
<td>40</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10/2018</td>
<td>11910</td>
<td>430</td>
<td>36</td>
<td>17250</td>
<td>860</td>
<td>1140</td>
<td>124.0</td>
<td>7.0</td>
<td>75</td>
<td>67</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/11/2018</td>
<td>7495</td>
<td>400</td>
<td>53</td>
<td>14345</td>
<td>771</td>
<td>1188</td>
<td>147.0</td>
<td>7.2</td>
<td>217</td>
<td>107</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/12/2018</td>
<td>6665</td>
<td>390</td>
<td>59</td>
<td>18365</td>
<td></td>
</tr>
<tr>
<td>1/13/2018</td>
<td>7910</td>
<td>420</td>
<td>53</td>
<td>16355</td>
<td></td>
</tr>
<tr>
<td>1/14/2018</td>
<td>7995</td>
<td>500</td>
<td>63</td>
<td>18375</td>
<td>571</td>
<td>158.0</td>
<td>7.6</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/15/2018</td>
<td>8780</td>
<td>730</td>
<td>83</td>
<td>16240</td>
<td>548</td>
<td>173.0</td>
<td>7.6</td>
<td>37</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/16/2018</td>
<td>8795</td>
<td>800</td>
<td>91</td>
<td>17210</td>
<td>535</td>
<td>163.0</td>
<td>7.6</td>
<td>27</td>
<td></td>
<td></td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/17/2018</td>
<td>8525</td>
<td>770</td>
<td>90</td>
<td>25485</td>
<td></td>
</tr>
</tbody>
</table>
IMPROVING WASTEWATER SYSTEMS

• MONITORING DATA & COMPREHENSION OF THE STORY IT’S TELLING
 • NITRIFICATION
 • WHAT INFORMATION DO YOU THINK WE SHOULD HAVE?
 • pH, ALKALINITY, MLSS, MLVSS, NH3, NO3, NO2, TEMPERATURE, DO, FLOWS, FOG
 • VISUAL OBSERVATIONS – MIXING, FOAM, SET TESTS, MICROSCOPIC EVALUATION
 • ONE ADDITIONAL TEST SHOULD BE ON THIS LIST, ONE GLORIOUS TEST WORTH ITS WEIGHT IN GOLD?

S.O.U.R. - NOT LIKE SOUR SKITTLES, LEMONHEAD, ETC. OR SOUR DRINK MIX FOR YOUR EVENING COCKTAIL

SPECIFIC OXYGEN UPTAKE RATE – mg O2/hr/g MLVSS
IMPROVING WASTEWATER SYSTEMS

S.O.U.R.

• RUN AN OXYGEN UPTAKE RATE TEST AND CONVERT TO SOUR - END OF AERATION
 • ACCOUNTS FOR CHANGES IN VOLATILE CONCENTRATIONS
 • OUR(mg O2/L/min) x 60 (min/hr) x 1000 (mg/g) / MLVSS (mg/L)
 • PROVIDES OPERATOR WITH BUG ACTIVITY LEAVING THE A-TANK
 • ARE THE BUGS HUNGRY & READY TO DUE BATTLE AT THE BUFFET LINE OR ARE THEY LOOSENING UP THEIR BELTS AFTER THANKSGIVING DINNER, HITTING THE LAZY BOY, AND SNOOZING.

• TYPICAL RANGES
 • CONVENTIONAL AS: 12 – 20 mg/hr/g MLVSS
 • EXTENDED AIR: 6 – 12 mg/hr/g MLVSS
 *Typical is relative to your respective system

• KNOWING YOUR TYPICAL RANGE DURING PERIODS OF GOOD SYSTEM PERFORMANCE IS YOUR BEST DEFENSE WHEN YOUR SYSTEM STARTS TRENDING THE WRONG DIRECTION
IMPROVING WASTEWATER SYSTEMS
S.O.U.R.

• SO HOW DO WE USE THIS AS AN OPERATIONAL TOOL WITH OUR OTHER DAILY TESTING
 • INCREASING SOUR
 • HIGHER LOADING
 • INCREASED TEMPERATURE
 • EXCESSIVE WASTING
 • SIGNS
 • LOWER DO
 • POSSIBLE DENITRIFICATION IN CLARIFIERS
 • NH3/NO2 BREAK THROUGH – HETEROTROPHS DOMINATING YOUR AUTOTROPHS
 • SLOWER SETTLING – SET TEST; DISPERSED GROWTH UNDER MICROSCOPE
IMPROVING WASTEWATER SYSTEMS
S.O.U.R.

• DECREASING SOUR
 • LOWER LOADINGS
 • LOWER TEMPS
 • POSSIBLE INHIBITION/TOXICITY
 • INCREASED MCRT – DIDN’T WASTE ENOUGH

• SIGNS
 • INCREASED DO – IS IT LOWER LOADINGS OR TOXICITY?
 • FASTER SETTLING – OLDER SLUDGE
 • FOAM ON AERATION – DARKER COLOR(OLD), GRAY/SLIME LOOKING
 • FOAM ON CLARIFIERS OR IN CONTACT TANK
 • NH3, NO2 BREAKTHROUGH
 • MICROSCOPIC EVALUATION – MAJORITY OF ROTIFERS OR MAYBE NOTHING
IMPROVING WASTEWATER SYSTEMS
S.O.U.R.

• HOW DO WE USE THIS INFO AS AN OPERATIONAL TOOL
 • HIGH SOUR – WHAT CHANGES CAN WE MAKE?
 • ANOXYC ZONE – NO3, NO2 BOTH <, MLR INCREASE
 • STRICTLY NITRIFICATION – RAS DECREASE, WAS DECREASE, HIGHER MCRT
 • LOW SOUR – AGAIN, WHAT CHANGES CAN WE MAKE?
 • TOO MUCH BIOMASS OR INHIBITION?
 • FED/UNFED TEST
 • LOAD FACTOR: 0 TO 1 – TOXICITY/INHIBITION
 • LOAD FACTOR: 1 TO 2 – DILUTE/STABLE LOAD
 • LOAD FACTOR: 2 TO 5 – NORMAL RANGE
 • LOAD FACTOR: > 5 – HIGH ORGANIC LOAD
 • LOWER MCRT OR STAY?
IMPROVING WASTEWATER SYSTEMS

S.O.U.R.

• AGAIN, PERIODICALLY RUN THESE TESTS TO DETERMINE WHAT YOUR NORMAL RANGE IS.
 • IT’S HARD TO KNOW WHERE YOU’RE GOING IF YOU DON’T KNOW WHERE YOU’RE AT OR WHERE
 YOU NEED TO BE.

• SOUR EQUIPMENT — YSI 5100, BOD PROBE FOR 5100, BOD BOTTLES ~ $2,500
 • OUR/SOUR CALCULATIONS PRE-PROGRAMMED
IMPROVING WASTEWATER SYSTEMS
UNDERSTANDING THE STORY

• EXAMPLES
 • EXTENDED PROCESS ISSUES AT MAIN COMPLEX
 • HIGH INFLUENT LOADINGS TO LAGOONS, LOWER TEMPS, PARTIAL NITRIFICATION, NH3 BREAKTHROUGH, HIGH SOUR’S, LOWER DO’S, HIGH LAGOON LEVELS
 • NOW WHAT?
 • HIGH EFFLUENT TSS
 • LOWER, YET FAIRLY NORMAL SOUR’S, DO NORMAL, SET TEST- 300 IN 30 MIN WITH CLEAR SUPERNATANT, ALL OTHER TESTS GOOD.
 • WHAT’S GOING ON? WHAT OTHER INFORMATION DO WE HAVE?
 • CLARIFIER BLANKETS ~1 TO 2 FEET
 • MLSS – 4000; RAS – 5500; RAS Q – 1.2 Q
IMPROVING WASTEWATER SYSTEMS

• KNOW YOUR SYSTEM
• DON’T BE AFRAID TO VENTURE OUTSIDE YOUR COMFORT ZONE
• COMMUNICATE
• DATA – ANALYTICAL AND VISUAL
• UNDERSTAND WHAT DATA IS TELLING YOU & MAKE ADJUSTMENTS
• 10% RULE
• TROUBLESHOOTING – WHAT’S THE ROOT CAUSE AND WHAT CAN I CHANGE TO HELP MYSELF OUT
WASTEWATER BEST PRACTICES
IMPROVING WASTEWATER SYSTEMS

QUESTIONS