Effects of Season and Trailer Design on Transport Losses in Market Weight Pigs

Dr. Matt Ritter1 and Dr. Mike Ellis2

1ELANCO Animal Health
2University of Illinois

2008 Livestock Transportation Conference, Kansas City, MO
February 13, 2008
Areas to Discuss

• Define transport losses

• Background
 – Incidence of transport losses in U.S.
 – Seasonal variation in transport losses
 – Trailer design

• Controlled study on trailer design and season
Transport Losses: Definitions

• Dead on arrival (DOA):
 – A pig that died during transport

• Non-ambulatory pig:
 – A pig unable to move or keep up with contemporaries
 – Downers, subjects, slows, suspects, cripples, stressors, fatigued, injured

• Transport losses:
 – The sum of dead and non-ambulatory pigs at the plant
Classifying Non-ambulatory Pigs

Yearly Incidence of Dead Pigs at USDA Inspected Plants (1991-2006)

Non-ambulatory Pigs at the Plant

- National statistics are not available for non-ambulatory pigs

- A summary of 22 commercial field trials (2000-2007)
 - 4,607,567 market weight pigs
 - 27,240 trailer loads of pigs

<table>
<thead>
<tr>
<th>Plant Losses</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deads, %</td>
<td>0.25</td>
<td>0.00</td>
<td>0.77</td>
</tr>
<tr>
<td>Non-ambulatory, %</td>
<td>0.37</td>
<td>0.11</td>
<td>2.34</td>
</tr>
<tr>
<td>Total losses, %</td>
<td>0.62</td>
<td>0.14</td>
<td>2.39</td>
</tr>
</tbody>
</table>

~1 pig per load dies or becomes non-ambulatory at the plant

Seasonal Variation in the Midwest

Trailer Design

- Trailer design has important implications for:
 - Environmental conditions inside the trailer
 - Ease of pig handling
 - Injuries and bruising
 - Transport losses
Components of Trailer Design

• Trailer type
 – Drop center (pot-belly)
 – Straight deck

• Number of decks
 – 2 decks
 – 3 decks

• Nose vents
 (photos courtesy of Wilson Trailers)

• Side vents
 – Punched sided
 – Slat sided

• Internal ramps
 – Yes vs. no
 – Ramp angle
 – Ascend vs. descend

(photos courtesy of Wilson Trailers)
Pot-belly vs. Straight Deck Trailers

• **Pot-belly advantages**
 – Lower center of gravity
 – Can haul pigs and/or cattle

• **Straight deck advantages**
 – Fewer internal ramps (1 vs. 5)
 – Ramps are designed for pigs

(Kelly Weaver, personal communication)
Punched Sided vs. Slat Sided

- **Punched sided advantages**
 - Biosecurity
 - Lighter weight
 - More aerodynamic

- **Slat sided advantages**
 - More open surface area
 - More ventilation when stopped?

(photos courtesy of Wilson Trailers)

(Kelly Weaver, personal communication)
Recent Field Data

• Survey data suggests that pot-belly trailers have 5\% higher transport losses than straight decks (McGlone, 2006)

• However, trailer design may be confounded with:
 – Driver, farm, length of journey, transport floor space

• Farm and driver are the two largest sources of variation in transport losses (Ellis et al., 2003)

Controlled Field Study

- Objectives: to determine the effects of trailer design and season on physical indicators of stress (during loading and unloading), transport losses at the plant, and carcass trim loss.

*This study was funded by the National Pork Board Checkoff

Experimental Design

• 109 trailer loads of market weight pigs (n = 17,256; ~286 lbs) from one commercial farm were used in a randomized complete block design with a 2×4 factorial arrangement of treatments:

1). Trailer design (pot-belly vs. straight-deck)

2). Season (spring vs. summer vs. fall vs. winter)
Trailer Designs Evaluated

- Both trailer designs were double-deck, aluminum, punched sided trailers from the same manufacturer (Wilson Trailers, Sioux City, IA)

Pot-belly

<table>
<thead>
<tr>
<th>Top 1</th>
<th>Top 2</th>
<th>Top 3</th>
<th>Top 4</th>
<th>Top 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottom 1</th>
<th>Bottom 2</th>
<th>Bottom 3</th>
<th>Bottom 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Straight Deck

<table>
<thead>
<tr>
<th>Top 1</th>
<th>Top 2</th>
<th>Top 3</th>
<th>Top 4</th>
<th>Top 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottom 1</th>
<th>Bottom 2</th>
<th>Bottom 3</th>
<th>Bottom 4</th>
<th>Bottom 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bottom 5</td>
</tr>
</tbody>
</table>

- Designates an internal loading ramp
- “X” Designates location of temperature and RH sensors
Seasons Evaluated

• Pigs were loaded on 28 days over all 4 seasons with pigs being transported on 7 days per season

• Seasons
 – Spring: April and May
 – Summer: August and September
 – Fall: September, October, and November
 – Winter: January and February
Handling at the Farm

• 2 pot-belly and 2 straight deck trailers were loaded in random order on each day

• Pigs were loaded by University of Illinois personnel
 – Sorting boards and electric prods, if necessary

• Pigs were mixed on the trailer and were provided with ~4.8 ft²/pig on the trailer

• One handler was used at the farm to load all 4 trailers
Handling at the Plant

• Pigs were transported ~4 hours to a commercial plant

• One handler was used at the plant to unload all 4 trailers

• Packing plant employees identified dead and non-ambulatory pigs up to the weigh scale
Measurements

• Trailer temperature and relative humidity by event
 – Loading, waiting at farm, transport, waiting at plant, and unloading

• Physical signs of stress (during loading and unloading)
 – Open-mouth breathing, skin discoloration, and muscle tremors

• Electric prod use during unloading
 – Recorded as “yes” or “no” by compartment

• Transport losses at the plant
 – Dead on arrival and non-ambulatory pigs

• Carcass trim loss
 – Percentage of carcasses requiring trim
Event Times

<table>
<thead>
<tr>
<th>Event times, min</th>
<th>Trailer Design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pot-belly</td>
</tr>
<tr>
<td>Loading</td>
<td>68.9</td>
</tr>
<tr>
<td>Waiting at farm</td>
<td>11.7</td>
</tr>
<tr>
<td>Transport</td>
<td>234.1</td>
</tr>
<tr>
<td>Waiting at plant</td>
<td>18.8</td>
</tr>
<tr>
<td>Unloading</td>
<td>35.8</td>
</tr>
<tr>
<td>Total time</td>
<td>364.6</td>
</tr>
</tbody>
</table>
Conditions Inside the Trailer

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Trailer Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average temperature, °C</td>
<td>Pot-belly 13.4</td>
</tr>
<tr>
<td>Average relative humidity, %</td>
<td>Straight Deck 15.2</td>
</tr>
<tr>
<td>Average relative humidity, %</td>
<td>Pot-belly 63.6</td>
</tr>
<tr>
<td>Average relative humidity, %</td>
<td>Straight Deck 59.8</td>
</tr>
</tbody>
</table>

- Note: effects of trailer design on temperature and relative humidity were dependent upon season

- More detailed information will be presented by season, deck, and compartment at the 2008 Midwest Animal Science Meetings (Murphy et al., 2008)
Electric Prod Use During Unloading

- Prods were used as a last resort by the plant truck monitor
- Prod use was recorded as “yes” or “no” by compartment

Pot-belly

<table>
<thead>
<tr>
<th>Top 1</th>
<th>Top 2</th>
<th>Top 3</th>
<th>Top 4</th>
<th>Top 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.89%</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

- Bottom 1: 32.1% (7.3% of all compartments)

Straight Deck

<table>
<thead>
<tr>
<th>Top 1</th>
<th>Top 2</th>
<th>Top 3</th>
<th>Top 4</th>
<th>Top 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00%</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

- Bottom 1: 0.00% (0.0% of all compartments)

Designates an internal loading ramp
Effects of Trailer Design on Physical Signs of Stress During Unloading

*Indicates a trailer design × season interaction (P < 0.05)
Effects of Trailer Design on Transport Losses at the Plant

![Bar chart showing transport losses for different categories and trailer designs.]

- Deads on Arrival: Pot-belly 0.35, Straight deck 0.35
- Non-ambulatory: Pot-belly 0.57, Straight deck 0.46
- Total Losses: Pot-belly 0.96, Straight deck 0.85

Note: The significance levels for group differences are indicated as follows:

- Deads on Arrival: (P = 0.67)
- Non-ambulatory: (P = 0.61)
- Total Losses: (P = 0.82)
Effects of Trailer Design on Carcass Trim Loss at the Plant

(P = 0.43)

Carcasses Requiring Trim, %

<table>
<thead>
<tr>
<th></th>
<th>Carcasses Requiring Trim, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pot-belly</td>
<td>6.72</td>
</tr>
<tr>
<td>Straight deck</td>
<td>7.29</td>
</tr>
</tbody>
</table>

(Elanco)
Effects of Season on Transport Losses at the Plant

Transport Losses, %

- Spring
- Summer
- Fall
- Winter

<table>
<thead>
<tr>
<th>Season</th>
<th>Deads on Arrival</th>
<th>Non-ambulatory</th>
<th>Total Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>(P = 0.67)</td>
<td>(P = 0.03)</td>
<td>(P = 0.38)</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Controlled Study

• Trailer temperature and relative humidity
 – Straight decks had higher temperatures and lower RH than pot-belly trailers

• Handling characteristics
 – Pot-belly trailers required more time to unload and more electric prod use

• Physical signs of stress
 – Pot-belly trailers had more OMB and SD during unloading

• Transport losses and carcass trim loss
 – No effects of trailer design on transport losses or carcass trim loss
 – Non-ambulatory rate was higher in winter than spring and summer
Overall Summary

• Trailer design
 – No effects of trailer design on transport losses when handling and transport floor space were standardized across trailers
 – Driver effects > trailer effects ???

• Season
 – In the Midwest, the rate of non-ambulatory pigs increases during late fall and early winter time period
 – Additional research is necessary to understand why
Back-up Slides
Seasonal Variation in Non-ambulatory Pigs

• Rate of non-ambulatory pigs increases in the Midwest during late fall and early winter (Ellis & Ritter, 2006)

• Potential explanations proposed by Ellis & Ritter (2006):
 – Temperature stress
 – Heavier pigs
 – Increased number of pigs transported
 – Health status
 – Summer is over!